Contribution of VTOL UAS to Information Advantage in the Maritime Domain

Presented at AAUS Autonomy in the Maritime Domain Conference Pacific 2019, Sydney, Australia
Overview

• Information Advantage in the Future Operating Environment

• VTOL UAS Concepts of Operation and Employment

• AWHERO and SW-4 “Solo” VTOL UAS, Ground Control Station & Data-Links

• ISR Payload Integration into VTOL UAS

• Integration of VTOL UAS with ship Combat Management Systems and the wider maritime force

• Concluding Remarks
Information Advantage in the Future Operating Environment

- Future Operating Environment will be complex, unstable & uncertain
- Adversaries will threaten stability of rules based international order
- Anticipate state-on-state and non-state competition, contested access to and control of all domains
- Information / Disinformation will be pervasive - influencing adversaries, stakeholders and audiences will be more complex
- An adversaries understanding, capability and desire to act can be affected by integrating information based activities with outreach and, as required, manoeuvre and strike
- Rapid information collect, processing and dissemination provides significant advantage – on any platform, anywhere, and any time

Joint Concept Note 1/17
Future Force Concept
Published by the UKMoD; July 2017

Informed by Global Strategic Trends
5th Edition

Global Strategic Trends
6th Edition
Published by the UKMoD; November 2018
Implications for Maritime Helicopters / VTOL UAS

- Maritime helicopters and VTOL-UAS required to protect national interests from increasingly capable airborne, surface and sub-surface threats.

- When necessary, will exert influence in and from the maritime domain, in the air above and into the littoral, and to support land and air forces with cross-domain Intelligence, Surveillance and Reconnaissance (ISR), power projection and logistics support.

- High-end war fighting capabilities including Intelligence, Surveillance, Target Acquisition and Reconnaissance (ISTAR), Anti-Submarine Warfare (ASW), Anti-Surface Warfare (ASuW), Mine Countermeasures (MCM) as well as Amphibious Support and Re-Supply

- Plus, constabulary operations to counter piracy, smuggling, people trafficking, drug trafficking, and terrorism; and Search and Rescue (SAR), and Humanitarian Assistance / Disaster Relief (HA/DR)
VTOL UAS Concept of Operations and Concept of Employment

Royal Navy Rotary Wing UAS Concept Capability Development (CCD) Phase 1

- Informed UKMoD / Royal Navy of suitability of Tactical Maritime UAS for wide range of missions including Intelligence, ISTAR, MCM & Hydrography
- Operation with Helicopters, Unmanned Surface Vessels and Unmanned Underwater Vessels

Leonardo In-House Studies

- Generated additional CONOPS/COMEMP for ASW, Naval Gun Fire Support using Precision Guided Weapons, Boarding Party Overwatch, SAR, and HA/DR
VTOL UAS Concept of Operations and Concept of Employment

Operations

• At distance from land bases and aviation capable ships
• All weather, day and night, in contested battle / cyber space, and in increasing threat environments
• Interoperable with maritime, air and ground vehicles when “over the beach”
• Teaming with other manned and unmanned assets will be commonplace

Resulting needs

• Long range/endurance, secure navigation and communications, sensor stand-off capability
• Rapid, secure and resilient Command & Control, Payload Management and Data Exchange via secure Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications and data-links
Rotary Wing Unmanned Air Systems – AWHERO

- Heavy Fuel Engine for maritime operations
- 3 bladed main rotor reduces noise and vibration
- Triple redundant FMS and redundant power systems
- Nose and Fuselage Payload Bays – up to 3 concurrent payloads

AWHERO is capable of performing the following:
- ISTAR using maritime radar with Synthetic Aperture Radar (SAR) and ISAR modes, AIS and the MX-10 Electro-Optic Device
- Passive ISTAR using the Leonardo SAGE ESM and MX-10 EOD
- Relay of data from distant sonobouys to ASW helicopters or direct to ASW capable surface combatant for processing and analysis
- Relay of C2 and payload data for BLOS control of Unmanned Surface Vessels and Unmanned Underwater Vehicles
Rotary Wing Unmanned Air Systems – SW-4 Solo

• 1.8 tonne Optionally Piloted Helicopter based on the EASA certified SW-4.

• Optionally piloted capability, with an on-board pilot
 - enables remote operation in uncontrolled airspace
 - also facilitates trials / demonstrations of latest unmanned systems / technologies, and
 - operations in close proximity to manned assets.

• SW-4 Solo has an integrated Flight Management System / Flight Control System with triplex architecture

• Nose and fuselage payloads include EO/IR, AESA Radar w/ AIS, ESM, IFF and LIDAR
Rotary Wing Unmanned Air Systems – Common GCS

- Command & Control and Payload Management of AWHERO and SW-4 Solo is provided by a Common Ground Control Station

- Operator “In the Loop”

- Secure C2 and payload (wideband) datalinks – LOS 100km range

- Flight / Mission Planning and Re-planning using DTED map / Way Point Navigation

- Auto-takeoff, Auto-land, Autorotation and Lost Link profiles
ISR Payload Integration – Maritime Radar

Gabbiano Ultra-Light Sea Search Modes

- Sea Surveillance (up to 160 NM)
- High Sea State surveillance (up to 40 NM)
- Small Moving Target Indicator (SMTI) (Optional)
- Air to Sea Inverse Synthetic Aperture Radar (ISAR)
- Air to Sea Track While Scan
- Sea Target Recognition (Optional)
- Beacon (SART and SST-181X)

Flat Plate Nose Antenna

- 180 degrees azimuth coverage;
- Fast scan rate capability (> 90 Deg/s)
- Selectable sector scan: ±15°, ± 30°, ± 60°, ± 90°
- Wide elevation coverage: from 30° up to 30° down
ISR Payload Integration – Electronic Support Measures

SAGE 600 ESM

- Band Coverage: 2GHz to 18 GHz
- 360 degrees azimuth coverage
- Elevation coverage: ±45 degrees
- Very high sensitivity and DF accuracy in ESM mode
- High accuracy single platform geo-location
- Fully programmable Mission Data File
- ESM/ELINT systems gather intelligence through passive “listening” to signals of interest
- Creates library of technical and operational data on systems of interest
ISR Payload Integration – Electro Optic Device

MX-8 Electro-Optic Device

- 4 sensor payloads simultaneously
 - Thermal, Colour-Daylight & Low-Light Imaging
 - Continuous Zoom IR & EO
 - Eyesafe Laser Rangefinder & Laser Illuminator
- Image Processing
 - Real time image enhancement
 - Feature recognition and identification
 - Automated Video Tracker
 - 2x, 4x, Ezoom

MX-10 Electro-Optic Device Enhancements

- 6 sensor payloads simultaneously
- Laser Designator
- High Definition IR / Pseudo Colour IR
- Advanced Video Tracker
- Embedded Moving Target Indicator
ISR Payload Integration – AIS

Saab R5A AIS

• Applications
 • Search & Rescue – Locate Vessel
 • Maritime Surveillance / Monitoring – Track AIS equipped vessels
 • Active Identification – In combination with radar, detect suspect vessels
 • Homing – Locate AIS equipped vessels to land on

• Functionality
 • Receive from AIS equipped units
 • Transmit to AIS equipped units
 • User control – autonomous transmit, manual transmit, receive only
ISR Payload Integration – IFF

Sagetech MX-12B Mode V Transponder

- Mode V IFF mandated by NATO to be operational by 2020

- Modern day “Challenge and Response” password system; when contacted, friends reply with correct code; those that don’t are potential hostiles

- Sagetech MX12B will support:
 - Civil Mode A, C, S, and ADS-B In/Out
 - Military Modes 1, 2, 3, and 5.
ISR Payload Integration – Configuration Options / Endurance

Active and Passive ISR Payload Options
- Radar, EO/IR, AIS, IFF – 6hrs endurance
- EO/IR, AIS, IFF - >6 hrs endurance
- EO/IR, ESM, AIS, IFF – up to 6hrs endurance

<table>
<thead>
<tr>
<th>AIS & IFF Plus:</th>
<th>Radar & 8” EO/IR</th>
<th>10” EO/IR</th>
<th>8” EO/IR ESM 360°</th>
<th>10” EO/IR ESM 180°</th>
<th>10” EO/IR ESM 360°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maritime Radar</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO/IR 10”</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EO/IR 8”</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ESM 360°</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ESM 180°</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>ENDURANCE</td>
<td>6h</td>
<td>6h+</td>
<td>6h</td>
<td>5h</td>
<td>4h 15’</td>
</tr>
</tbody>
</table>
VTOL UAS / Large Ship Integration

Unmanned Warrior ‘16

- SW-4 Solo with Opsrey ASEA radar with AIS, SAGE ESM and EOD exchanged data with representative CMS through UK MoD “OACS / MAPLE” system architecture
- Leonardo operative in Ops Room was in direct communications with GCS operatives to provide connectivity between “taskers” and “operators”

Shared Infrastructure Demo (BAES/Leonardo/RN), DSEI, London, 2019

- SI is Open Architecture System currently being fitted to RN warships
- DSEI demonstration was first integration of multi level secure off board systems
- Allows RN to develop CMS capabilities by deploying new 3rd party capabilities via a host environment and common services alongside, and without compromising, the existing ships CMS
- Provides opportunity to rapidly integrate VTOL-UAS C2 and Payload Management capabilities with RN ships
VTOL UAS Manned / Unmanned Teaming

- RWUAS will augment manned platforms in the short – mid term
- ISR Collect
 - Series Operations: AWHERO provides wide area surveillance for longer periods and at lower operating cost than manned helicopters
 - Parallel Operations: AWHERO monitors alternative area to manned helicopter or provides over watch of manned helicopter operations
- ASuW
 - AWHERO provides wide area persistent surveillance with manned helicopter on quick alert to provide rapid reaction / strike capability
- ASW
 - AWHERO can relay acoustic data from a sono-buoy field to suitably equipped ASW helicopter or directly to an ASW capable ship
- AMCM
 - AWHERO can relay C2 and Payload data to/from USVs and UUV operating Beyond Line of Sight from mother ship
VTOL UAS – Manned Unmanned Teaming – Data / Video Transfer

Exercise Italian Blade Air to Air Demo (2015)

- SW-4 Solo and AW-129D, UH-90 and CH-47C helicopters operated as Tactical Communications Nodes exchanging digital information to support Close Air Support (CAS) and Close Combat Attack (CCA) ops
- SW-4 Solo’s radar and EO/IR sensors provided target position, still pictures and FMV to manned helicopters using ROVER4
- SW-4 Solo Ground Control Station received data from manned helicopters for re-tasking / re-positioning of SW-4 Solo

Leonardo Air to Air / Air to Ground Demo (October 2018)

- Transfer of tactical data and FMV video between AW159 Wildcat Helicopter WAH-64D Attack Helicopter and Foxhound Protected Patrol Vehicle
 - AW159 Full Systems Integration Rig with VORTEXi and Data Modem (IDM)
 - WAH-64D Mission Avionic System Rig with ROVER6i and IDM fitted
 - Foxhound with Joint Common Remote Viewing Terminals and BOWMAN
VTOL UAS Manned Unmanned Teaming – Control of VTOL UAS

• Demonstrated Level of Interoperability 4 (control of flight) of a Rotary UAS by an AW159 in a synthetic environment as part of a UK MoD sponsored programme

• Flight path control, excluding take-off and landing, was enabled for the front seat aircrew of AW159

• Demonstrated that battlespace digitisation and teaming reduces the OODA* loop timescales to increase ISR capability

• Awarded UK MOD DASA contract to support the British Army Warfighting Experiment (AWE19) exercise in Q1 2020

• Demonstration of STANAG 4586 compliant Manned Unmanned Teaming up to Level of Interoperability (LOI) 4 of the 2 crew AW159 and a UAV

• The AW159 HMI will be developed with the UK MOD to optimise aircrew workload.

*Observe – Orient – Decide - Act
VTOL UAS Teaming – Multiple UXV / Multiple Ships / Networking

- OCEAN 2020 managed by Leonardo on behalf of EDA
- Demonstration of significant improvement of maritime Situation Awareness through integration of UXVs with ISTAR payloads
- Interoperability by use of open architecture / recognised standards

- High levels of integration among EU countries and heterogeneous systems operation during full-scale demonstrations in:
 - Mediterranean Sea in 2019 (SW-4 Solo / AWHERO / NH-90)
 - Baltic Sea in 2020
- Development of EU C4ISR open architecture and integration of EU/NATO/civil data framework
- Demonstration of advanced data and information fusion techniques for shorter decision time at CMS and MOC levels
- Increased autonomy for UXS, swarm operations and cooperation of assets
Concluding Remarks

• The Future Operating Environment will increase demands on the maritime force – especially ISR above, on and below the surface

• Leonardo’s manned maritime helicopters conduct full spectrum of maritime operations providing Leonardo with a unique perspective when developing VTOL UAS capabilities for the maritime

• Leonardo at forefront of maritime VTOL UAS platform and system development such as AWHERO with Radar and ESM integrated with EOD, AIS and IFF, plus payloads such as Comms Relay

• Demonstrations of manned unmanned teaming such as OCEAN 2020 are showing a significant increase in maritime capabilities

• Future maritime force will be a formidable mix of manned and unmanned platforms fully integrated with surface, sub-surface, air and ground assets

• Leonardo continues to develop new technologies and capabilities to ensure its VTOL UAS platforms and systems deliver maximum operational benefit to the integrated force
THANK YOU FOR YOUR ATTENTION
leonardocompany.com
Contact details

Tony Duthie
Head of Land & Maritime Marketing
Leonardo Helicopters
Yeovil, BA20 2YB
United Kingdom